Extensions 1→N→G→Q→1 with N=C22 and Q=C4×He3

Direct product G=N×Q with N=C22 and Q=C4×He3
dρLabelID
C22×C4×He3144C2^2xC4xHe3432,401

Semidirect products G=N:Q with N=C22 and Q=C4×He3
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×He3) = C4×C32⋊A4φ: C4×He3/C3×C12C3 ⊆ Aut C22363C2^2:(C4xHe3)432,333
C222(C4×He3) = C22⋊C4×He3φ: C4×He3/C2×He3C2 ⊆ Aut C2272C2^2:2(C4xHe3)432,204

Non-split extensions G=N.Q with N=C22 and Q=C4×He3
extensionφ:Q→Aut NdρLabelID
C22.(C4×He3) = M4(2)×He3φ: C4×He3/C2×He3C2 ⊆ Aut C22726C2^2.(C4xHe3)432,213
C22.2(C4×He3) = C2×C8×He3central extension (φ=1)144C2^2.2(C4xHe3)432,210

׿
×
𝔽